Probability theory

Exercise Sheet 2

Exercise 1 (4 Points)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, (Ω', \mathcal{F}') a measurable space, and $\varphi : \Omega \to \Omega'$ measurable. We define the image measure $\mathbb{P} \circ \varphi^{-1}$ on (Ω', \mathcal{F}') by

$$\left(\mathbb{P}\circ\varphi^{-1}\right)(A)=\mathbb{P}\left(\varphi^{-1}(A)\right),\quad A\in\mathcal{F}'.$$

- (a) Show that $(\Omega', \mathcal{F}', \mathbb{P} \circ \varphi^{-1})$ is a probability space.
- (b) Let $f: \Omega' \to \mathbb{R}$ be measurable. Show that f is integrable with respect to $\mathbb{P} \circ \varphi^{-1}$ if and only if $f \circ \varphi$ is integrable with respect to \mathbb{P} . Moreover, show that in this case, we have

$$\mathbb{E}\left[f\left(\varphi(\omega)\right)\right] = \int_{\Omega'} f(\omega') \left(\mathbb{P} \circ \varphi^{-1}\right) (\mathrm{d}\omega').$$

Exercise 2 (4 Points)

Suppose $X_n, X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbb{P})$ and $Y_n, Y \in \mathcal{L}^q(\Omega, \mathcal{F}, \mathbb{P})$ with $p, q \in [1, \infty]$ such that

$$||X_n - X||_{\mathcal{L}^p} \longrightarrow 0 \text{ and } ||Y_n - Y||_{\mathcal{L}^q} \longrightarrow 0, \quad n \to \infty.$$

Prove that $||X_nY_n - XY||_{\mathcal{L}^1} \longrightarrow 0$ as $n \to \infty$, provided 1/p + 1/q = 1.

Exercise 3 (4 Points) Let $\Omega_1 = \Omega_2 = \mathbb{N}$, $\mathcal{F}_1 = \mathcal{F}_2 = 2^{\mathbb{N}}$, and $\mu_1 = \mu_2 = \mu$ be the counting measure $\mu(A) = \sum \delta(A) = A \subset \mathbb{N}$

$$\mu(A) = \sum_{n \in \mathbb{N}} \delta_n(A), \quad A \subset \mathbb{N}$$

Let $f: \Omega_1 \times \Omega_2 \to \mathbb{R}$ be given by

$$f(n,m) = \begin{cases} n, & n = m \\ -n, & m = n+1 \\ 0, & \text{otherwise} \end{cases}$$

Show that

$$\int_{\Omega_1} \left(\int_{\Omega_2} f(n,m) d\mu_2(m) \right) d\mu_1(n) = 0,$$

$$\int_{\Omega_2} \left(\int_{\Omega_1} f(n,m) d\mu_1(n) \right) d\mu_2(m) = \infty.$$

Does this contradict Fubini's theorem? 1

Exercise 4 (4 Points, talk)

Look up the Theorem of Radon-Nikodym for probability measures. Find and prepare two examples for the particular case of probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.